
GPDs at EIC:
Fits, Modelling, and opportunities

Cédric Mezrag

DPhN, Irfu, CEA, Université Paris-Saclay

March 18th, 2021

Cédric Mezrag (Irfu-DPhN) GPDs at EIC March 18th , 2021 1 / 15



Generalized Parton Distributions

Generalized Parton Distributions (GPDs):

I “hadron-parton” amplitudes which depend on three variables (x , ξ, t)
and a scale µ,

I are defined in terms of a non-local matrix element,
I can be split into quark flavour and gluon contributions,
I are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
I are universal, i.e. are related to the Compton Form Factors (CFFs) of

various exclusive processes through convolutions
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D. Müller et al., Fortsch. Phy. 42 101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)

A. Radyushkin, Phys. Lett. B380, 417 (1996)

4 GPDs without helicity transfer + 4 helicity flip GPDs
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Experimental connection to GPDs

Observables
(cross sections,
asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

1/Q2

expansion,
. . .

αS

expansion and
convolution

CFFs play today a central role in our understanding of GPDs
Extraction generally focused on CFFs
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Deep Virtual Compton Scattering

−q2 = Q2

q′e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x − ξ)P+

q2 = −Q2

e− e−

p1 p2

k k′

FF

q2 = −Q2

e− e−

p1 p2

k k′

FF

Best studied experimental process connected to GPDs
→ Data taken at Hermes, Compass, JLab 6, JLab 12

Interferes with the Bethe-Heitler (BH) process
I Blessing: Interference term boosted w.r.t. pure DVCS one
I Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408
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Recent CFF extractions

0

3

6

9

12

I
m
H

KM20

NN20

NNDR20

−6

−4

−2

0

2

R
e
H

−10

−8

−6

−4

−2

0

I
m
E

−10

0

10

R
e
E

0.05 0.10 0.15 0.20 0.25 0.30
ξ = xB/(2− xB)

0

1

2

3

I
m
H̃

0.05 0.10 0.15 0.20 0.25 0.30
ξ = xB/(2− xB)

−60

−40

−20

0

I
m
Ẽ

M. Cuic̀ et al., PRL 125, (2020), 232005
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H. Moutarde et al., EPJC 79, (2019), 614

Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., arXiv:2012.04801

Studies of ANN architecture to fulfil GPDs properties (dispersion
relation,polynomiality,. . . )
Recent efforts on propagation of uncertainties (allowing impact studies
for EIC and EICC)
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Dispersion relation and the D-term

At all order in αS , dispersion relations relate the real and imaginary
parts of the CFF. I. Anikin and O. Teryaev, PRD 76 056007

M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932

For instance at LO:
D(α, t) is related to the EMT (pressure and shear forces)

M.V. Polyakov PLB 555, 57-62 (2003)

figure from H. Dutrieux et al., accepted in EPJC, arXiv
2101.03855

Subtraction constant obtained
through ANN fit
World data yield a result
compatible with 0
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From CFF to GPDs
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GPD Properties

Polynomiality Property:

∫ 1

−1
dx xmHq(x , ξ, t;µ) =

[m2 ]∑

j=0

ξ2jCq
2j(t;µ)+mod(m, 2)ξm+1Cq

m+1(t;µ)

X. Ji, J.Phys.G 24 (1998) 1181-1205
A. Radyushkin, Phys.Lett.B 449 (1999) 81-88

Special case : ∫ 1

−1
dx Hq(x , ξ, t;µ) = F q

1 (t)

Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
Relativistic quantum mechanics

Soft pion theorem (pion GPDs only)
Axial-Vector WTI

Scale evolution property:
Renormalization

Problem
There is no model (until now) fulfilling a priori all these constraints.
Lattice QCD computations remain very challenging.
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A. Radysuhkin, Phys. Rev. D59, 014030 (1999)

B. Pire et al., Eur. Phys. J. C8, 103 (1999)
M. Diehl et al., Nucl. Phys. B596, 33 (2001)

P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)
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DVCS Deconvolution Problem I

H(ξ, t,Q2) =

∫ 1

−1

dx
ξ
C

(
x

ξ
,
Q2

µ2 , αs(µ)

)
H(x , ξ, t, µ)

Definition of the problem
Being given H on a large kinematical range and with excellent precision, is
it possible to recover H unambiguously?

Not a new problem (already raised in the 1990s), but it remains open,
generally speaking.
At LO, the answer is definitely no. We can find 0-order shadow GPDs
h0 providing that

I h0(x , 0, 0) = 0 and h0(x , x , t) = 0
I h0 has no D-term.

Role of higher orders corrections and evolution equations?
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DVCS Deconvolution Problem II

Hervé Dutrieux

Singularity structure of DVCS coefficient function
→ proof that the convolution is not invertible
there exist NLO shadow GPD h1

Evolution: it yields contributions of ∼ α2
S

Explicit construction of an example
Vector space of solution → many
shapes allowed

A way out
Shadow GPD are process dependent
Multichannel analyses offer a way out
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PARTONS and Gepard

PARTONS
partons.cea.fr

B. Berthou et al., EPJC 78 (2018) 478

Gepard
calculon.phy.hr/gpd/server/index.html

K. Kumericki, EPJ Web Conf. 112 (2016) 01012

Similarities : NLO computations, BM formalism, ANN, . . .
Differences : models, evolution, dissemination, . . .

Physics impact
These integrated softwares are the mandatory path toward reliable
multichannel analyses.
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The Sullivan process: targeting the pion

1

FIG. 1: Triangle diagram for the form factor.

FIG. 2

I. MOMENTUM ASSIGNMENT

The definition of the form factor is shown in Fig. 1, where

k1 = k − P

2
, (1)

k2 = k +
P

2
− Q

2
, (2)

k3 = k +
P

2
+

Q

2
. (3)

Because of the momentum conservation, the triangle diagram has two independent momenta P and Q with

Pi = P − Q

2
, (4)

Pf = P +
Q

2
. (5)

The components of P and Q are defined as

P = (0, 0, P3, iP4), (6)

Q = (0, 0, Q3, iQ4), (7)

virtual pion targets envisioned for FF
and PDF measurement at an EIC

would DVCS be possible ?
see C. Keppel talk at CFNS workshop 06/2020
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PARTONS: a way to assess feasibility

José Manuel
Morgado Chavez

Elaborating on a previous paper by D. Amrath, M.
Diehl and J.-P. Lansberg

D. Amrath et al., Eur.Phys.J.C 58 (2008) 179-192

State-of-the-art pion GPD model
I Positivity and Polynomiality obtained by

construction
I t dependence fixed to latest available experimental

data for EMFF and GFF
G.M. Huber et al., Phys.Rev.C 78 (2008) 045203

S. Kumano et al., Phys.Rev.D 97 (2018) 1, 014020

I Forward limit built from state-of-the-art DSE
computations

M. Ding et al., Phys.Rev.D 101 (2020) 5, 054014

PARTONS: One-loop evolution equations and NLO
CFF → suited for EIC kinematics

Work in progress, stay tuned for our results
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I t dependence fixed to latest available experimental

data for EMFF and GFF
G.M. Huber et al., Phys.Rev.C 78 (2008) 045203

S. Kumano et al., Phys.Rev.D 97 (2018) 1, 014020

I Forward limit built from state-of-the-art DSE
computations

M. Ding et al., Phys.Rev.D 101 (2020) 5, 054014

PARTONS: One-loop evolution equations and NLO
CFF → suited for EIC kinematics

Work in progress, stay tuned for our results
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Summary & Conclusion

Summary
Global fits of CFFs have been pursued through ANN
The leap from CFFs to GPDs is complicated because of both
theoretical constraints and non-invertibility of the convolution with the
coefficient function
Way out : multichannel analysis (DVMP, DDVCS, Multi-particle
production. . . )

Conclusion
Multichannel analyses is the way to go for global GPD fits
Other opportunities at an EIC beside the nucleon (pion, nuclei)
Work in progress on the Sullivan process
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Thank you for your attention
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